Chapter-2 Basic Laws

項目

<table>
<thead>
<tr>
<th>課題</th>
<th>問題描述</th>
<th>圖示</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.15</td>
<td>Calculate v and i_x in the circuit of Fig. 2.79.</td>
<td></td>
</tr>
<tr>
<td>2.17</td>
<td>Determine V_o in the circuit of Fig. 2.80.</td>
<td></td>
</tr>
<tr>
<td>2.23</td>
<td>In the circuit shown in Fig. 2.87, determine v_x and the power absorbed by the 12-Ω resistor.</td>
<td></td>
</tr>
<tr>
<td>2.25</td>
<td>For the network in Fig. 2.89, find the current, voltage, and power associated with the 20-kΩ resistor.</td>
<td></td>
</tr>
<tr>
<td>2.31</td>
<td>For the circuit in Fig. 2.95, determine i_1 to i_5.</td>
<td></td>
</tr>
</tbody>
</table>
2.41 If $R_{eq}=50\Omega$ in the circuit of Fig. 2.105, find R.

2.45 Find the equivalent resistance at terminals a-b of each circuit in Fig. 2.109.

2.47 Find the equivalent resistance R_{ab} in the circuit of Fig. 2.111.

2.53 Obtain the equivalent resistance R_{ab} in each of the circuits of Fig. 2.117. In (b), all resistors have a value of 30Ω.
2.55 Calculate I_O in the circuit of Fig. 2.119.

![Figure 2.119](image1)

2.57 Find R_{eq} and I in the circuit of Fig. 2.121.

![Figure 2.119](image2)
Chapter-3 Methods of Analysis

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Find the current I_1 through I_4 and the voltage v_o in the circuit of Fig. 3.52.</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Apply nodal analysis to solve for V_x in the circuit of Fig. 3.56.</td>
<td></td>
</tr>
<tr>
<td>3.15</td>
<td>Apply nodal analysis to find i_o and the power dissipated in each resistor in circuit of Fig. 3.64.</td>
<td></td>
</tr>
<tr>
<td>3.19</td>
<td>Use nodal analysis to find v_1, v_2 and v_3 in the circuit of Fig. 3.68.</td>
<td></td>
</tr>
<tr>
<td>3.23</td>
<td>Use nodal analysis to find V_o in the circuit of Fig. 3.72.</td>
<td></td>
</tr>
</tbody>
</table>
3.27 Use nodal analysis to determine voltage v_1, v_2, and v_3 in the circuit of Fig. 3.76.

[Figure 3.76]

3.31 Find the node voltage for the circuit in Fig. 3.80.

[Figure 3.80]

3.39 Determine the mesh current i_1 and i_2 in the circuit shown in Fig. 3.85.

[Figure 3.85]

3.41 Apply mesh analysis to find i in Fig. 3.87.

[Figure 3.87]

3.45 Find current i in the circuit of Fig. 3.91.

[Figure 3.91]
<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.51</td>
<td>Apply mesh analysis to find v_o in the circuit of Fig. 3.96.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3.55</td>
<td>In the circuit of Fig. 3.100, solve for I_1, I_2, and I_3.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3.61</td>
<td>Calculate the current gain i_o/i_s in the circuit of Fig. 3.105.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3.63</td>
<td>Find v_x and i_x in the circuit shown in Fig. 3.107.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3.67</td>
<td>Obtain the node-voltage equations for the circuit in Fig. 3.111 by inspection. Then solve for V_o.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.69 For the circuit shown in Fig. 3.113, write the node-voltage equations by inspection.

![Figure 3.113](image)

3.71 Write the mesh-current equations for the circuit in Fig. 3.115. Next, determine the values of i_1, i_2, and i_3.

![Figure 3.115](image)

3.87 For the circuit in Fig. 3.123, find the gain v_o/v_s.

![Figure 3.123](image)

3.91 For the transistor circuit of Fig. 3.127, find I_B, V_{CE}, and v_o. Take $\beta=200$, $V_{BE}=0.7V$.

![Figure 3.127](image)
4.10 For the circuit below, find the terminal voltage V_{ab} using superposition.

4.11 Use the superposition principle to find i_o and v_o in the circuit.

4.14 Apply the superposition principle to find v_o in the circuit.

4.18 Use superposition to find V_o below the circuit.
4.22 Referring to below the circuit, use source transformation to determine the current and power in the 8-Ω resistor.

4.24 Use source transformation to find the voltage V_x below the circuit.

4.32 Use source transformation to find i_x below the circuit.

4.38 Apply Thévenin's theorem to find V_o below the circuit.
4.43 Find the Thevenin equivalent looking into terminals a-b below the circuit and solve for i_x.

![Circuit Diagram](image1)

4.44 Below the circuit, obtain the Thevenin equivalent as seen from terminals.

![Circuit Diagram](image2)

4.47 Obtain the Thévenin and Norton equivalent circuits below the circuit with respect to terminals a and b.

![Circuit Diagram](image3)

4.51 Below the circuit, obtain the Norton equivalent as viewed from terminals (a) a-b (b) c-d.

![Circuit Diagram](image4)
4.57 Obtain the Thevenin and Norton equivalent circuits at the terminals a-b below the circuit.

![Circuit 1](image1.png)

4.59 Determine the Thevenin and Norton equivalents at terminals a-b below the circuit.

![Circuit 2](image2.png)

4.67 The variable resistor R below the circuit is adjusted until it absorbs the maximum power from the circuit. (a) Calculate the value of R for maximum power. (b) Determine the maximum power absorbed by R.

![Circuit 3](image3.png)

4.70 Determine the maximum power delivered to the variable resistor R shown below the circuit.

![Circuit 4](image4.png)
4.75 Below the circuit, determine the value of R such that the maximum power delivered to the load is 3 mW.
5.8 Obtain v_o for each of below the op amp circuits.

5.11 Find v_o and i_o below the circuit.

5.13 Find v_o and i_o below the circuit.
5.19 Determine i_o below the circuit.

5.26 Determine i_o below the circuit.

5.28 Find i_o below the op amp circuit.

5.31 Below the circuit, find i_v.
5.34 Below the op amp circuit, express \(v_o \) in terms of \(v_1 \) and \(v_2 \).
5.57 Find v_o below the op amp circuit.

![Op Amp Circuit](image1.png)

5.61 Determine v_o below the circuit.

![Circuit](image2.png)

5.62 Obtain the closed-loop voltage gain v_o/v_i below the circuit in.

![Circuit](image3.png)
5.71 Determine v_o below the op amp circuit.
Ch. 6 Capacitors and inductors

6.6 The voltage waveform in below circuit is applied across a 30-μF capacitor. Draw the current waveform through it.

6.13 Find the voltage across the capacitors below the circuit under dc conditions.

6.17 Determine the equivalent capacitance for each of the circuits below.
6.18 Find \(C_{eq} \) below the circuit if all capacitors are 4 \(\mu F \).

\[\text{Diagram with} \quad C_{eq} \]

6.22 Obtain the equivalent capacitance below the circuit.

\[\text{Diagram with capacitances} \]

6.26 Three capacitors, \(C_1 = 5 \mu F \), \(C_2 = 10 \mu F \), and \(C_3 = 20 \mu F \), are connected in parallel across a 150-V source. Determine:

(a) the total capacitance,

(b) the charge on each capacitor,

(c) the total energy stored in the parallel combination.
6.28 Obtain the equivalent capacitance of below the network.

6.31 If \(v(0) = 0 \), find \(v(t) \), \(i_1(t) \), and \(i_2(t) \) below the circuit.

6.32 Below the circuit, let \(i_s = 30e^{-2t} \) mA and \(v_1(0) = 50 \) V, \(v_2(0) = 20 \) V. Determine: (a) \(v_1(t) \) and \(v_2(t) \), (b) the energy in each capacitor at \(t = 0.5 \) s.
6.46 Find v_C, i_L, and the energy stored in the capacitor and inductor below the circuit under dc conditions.

![Circuit Diagram](image)

6.48 Under steady-state dc conditions, find i and v below the circuit.

![Circuit Diagram](image)

6.53 Find L_{eq} at the terminals below the circuit.

![Circuit Diagram](image)
6.55 Find L_{eq} in each of below the circuits.

![Image of circuits](image)

6.61 Consider below the circuit. Find: (a) L_{eq}, $i_1(t)$ and $i_2(t)$ if $i_x = 3e^{-t}$ mA

(b) $v_o(t)$, (c) energy stored in the 20-mH inductor at $t=1$s.

![Image of circuit](image)

6.74 The triangular waveform in below Fig. (a) is applied to the input of the op amp differentiator in Fig. (b). Plot the output.

![Image of waveform and circuit](image)
7.2 Find the time constant for the\(RC \) circuit in the figure below.

![Circuit Diagram](image1)

7.5 For the circuit shown in the figure below, find \(i(t), t > 0 \).

![Circuit Diagram](image2)

7.8 For the circuit in the figure below, if \(v = 10e^{-4t} \) V and \(i = 0.2e^{-4t} \) A, \(t > 0 \)

(a) Find \(R \) and \(C \).
(b) Determine the time constant.
(c) Calculate the initial energy in the capacitor.
(d) Obtain the time it takes to dissipate 50 percent of the initial energy.

![Circuit Diagram](image3)
7.12 The switch in the circuit of the figure below has been closed for a long time. At \(t = 0 \) the switches opened. Calculate \(i(t) \) for \(t > 0 \).

![Circuit Diagram](image)

7.18 For the circuit in the figure below, determine \(v_0(t) \) when \(i(0) = 1 \) A and \(v(t) = 0 \).

![Circuit Diagram](image)

7.22 Find \(i(t) \) and \(v(t) \) for \(t > 0 \) in the circuit of the figure below if \(i(0) = 10 \) A.

![Circuit Diagram](image)
7.42 (a) If the switch in the figure below has been open for a long time and is closed at \(t = 0 \), find \(v_o(t) \).

(b) Suppose that the switch has been closed for a long time and is opened at \(t = 0 \). Find \(v_o(t) \).

\[\begin{align*}
12 \text{ V} & \quad 2 \Omega \\
\text{+} & \quad t = 0 \\
4 \Omega & \quad 3 \text{ F} \\
& \quad + \\
& \quad - \quad v_o
\end{align*} \]

7.48 Find \(v(t) \) and \(i(t) \) in the circuit of the figure below.

\[\begin{align*}
\text{u(-t) A} & \quad 10 \Omega \\
& \quad 0.1 \text{ F} \\
20 \Omega & \quad + \\
& \quad - \quad i \\
& \quad + \\
& \quad - \quad v
\end{align*} \]

7.54 Obtain the inductor current for both \(t < 0 \) and \(t > 0 \) in each of the circuits in the figure below.

(a) \[\begin{align*}
2 \text{ A} & \quad 4 \Omega \\
& \quad 12 \Omega \\
& \quad t = 0 \\
4 \Omega & \quad 4 \Omega \\
& \quad 3.5 \text{ H} \\
i & \quad i
\end{align*} \]

(b) \[\begin{align*}
10 \text{ V} & \quad 24 \text{ V} \\
& \quad 2 \Omega \\
& \quad 6 \Omega \\
& \quad 3 \Omega \\
i & \quad i
\end{align*} \]
7.62 For the circuit in the figure below, calculate $i(t)$ if $i(0) = 0$.

[Image of an RC circuit with $u(t-1)\,\text{V}$, $3\,\Omega$, $6\,\Omega$, and $2\,\text{H}$]

7.73 For the op amp circuit in Fig. 7.138, let $R_1 = 10\,\text{k}\,\Omega$, $R_f = 20\,\text{k}\,\Omega$, $C = 20\,\mu\text{F}$, and $v(0) = 1\,\text{V}$. Find v_0.

[Image of an op amp circuit with R_1, C, and R_f]

7.78 The switch in Fig. 7.142 moves from position a to b at $t = 0$. Use PSpice to find $i(t)$ for $t > 0$.

[Image of a circuit with a 108 V source, $3\,\Omega$, $6\,\Omega$, $4\,\Omega$, $6\,\Omega$, and $2\,\text{H}$]
Ch. 8 Second-Order Circuits

8.4 In the circuit of the figure below, find:
(a) \(v(0^+) \) and \(i(0^+) \),
(b) \(dv(0^+)/dt \) and \(di(0^+)/dt \),
(c) \(v(\infty) \) and \(i(\infty) \).

8.5 Refer to the circuit in the figure below. Determine:
(a) \(v(0^+) \) and \(i(0^+) \),
(b) \(dv(0^+)/dt \) and \(di(0^+)/dt \),
(c) \(v(\infty) \) and \(i(\infty) \).

8.16 Find \(i(t) \) for \(t > 0 \) in the circuit of the figure below.
8.25 In the circuit of the figure below, calculate $i_0(t)$ and $v_0(t)$ for $t > 0$.

![Circuit Diagram](image)

8.31 Consider the circuit in the figure below. Find $v_L(0^+)$ and $v_C(0^+)$.

![Circuit Diagram](image)

8.37 For the network in the figure below, solve for $i(t)$ for $t > 0$.

![Circuit Diagram](image)
8.42 Given the network in the figure below, find \(v(t) \) for \(t > 0 \).

8.47 Find the output voltage \(v_0(t) \) in the circuit of the figure below.

8.57 If the switch in the figure below has been closed for a long time before \(t = 0 \), but is opened at \(t = 0 \) determine:
(a) the characteristic equation of the circuit,
(b) \(i_x \) and \(v_R \) for \(t > 0 \).
8.62 Find the response $v_R(t)$ for $t > 0$ in the circuit of the figure below. Let $R = 3\Omega$, $L = 2\, \text{H}$, $C = 1/18\, \text{F}$.

\begin{center}
\includegraphics[width=0.5\textwidth]{circuit1.png}
\end{center}

8.65 Determine the differential equation for the op amp circuit in the figure below. If $v_1(0^+) = 2\, \text{V}$ and $v_2(0^+) = 0\, \text{V}$ find v_o for $t > 0$. Let $R = 100\, \text{k}\Omega$ and $C = 1\, \mu\text{F}$.

\begin{center}
\includegraphics[width=0.5\textwidth]{circuit2.png}
\end{center}

8.67 In the op amp circuit of the figure below, determine $v_o(t)$ for $t > 0$. Let $v_{in} = u(t)\, \text{V}$, $R_1 = R_2 = 10\, \text{k}\Omega$, $C_1 = C_2 = 100\, \mu\text{F}$.

\begin{center}
\includegraphics[width=0.5\textwidth]{circuit3.png}
\end{center}